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A NON-LINEAR  SHOCK WAVE   REFLECTION  THEORY 

ABSTRACT 

A one-dimensional theory of normal reflection of blast waves from 

walls is given.  The method satisfies the initial and boundary conditions 

of the problem.  It is shown how the entire reflected wave zone, 

including the reflected shock front and the pressure and impulse on  the 

wall  .    can   be    fal fill flt.eri _ 
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LIST OF SYMBOLS 

*  = denotes dimensional quantities 

a  = a constraint parameter on u 

b  = a constraint parameter on u 

n* = sound velocity ^ n UP^-1
' R+.n^Vip^ ^i r 

oo 

c*  = sound velocity in region traversed by incident shock 
o 

o 
c 
O     C" 

OO 

c*  = sound velocity in region traversed by reflected shock 

c* 
00 

T?^        =    SCSClfiC     i nt ern° ^ ^^ ^ >*<~nr    r**P   nn/H ctnrh oH     ot i* v 

E*  = specific internal energy in region traversed by incident shock 

E* - E* 
E     °  ~°° 
0     „*2 c* 

uu 

E*  = specific internal energy in region traversed by reflected shock 

E* - E* 
E  = 2£ 

OO 

M* = mass of explosive 

p* = total pressure of undisturbed air 

p* = total pressure in region traversed by incident shock 

P* o 
o   p* 

*oo 

P  = total pressure in region traversed b^r reflected shock 



LIST   OF  SYMBOLS   (Contd) 

P* 

P* oo 

R*    =  «as   constant 

S* = specific entropy of undisturbed air 
oo 

S*  = specific entropy in region traversed by incident shock 

S* - S* 
Q      -    °        QO bo  ~   R* 

S*  = specific entropy in region traversed by reflected shock 

S* - S* 

R* 

t*  = time 

c* p*  1/3 

t  = (-22-^    t* 

u*     =  particle   velocity   in   region   traversed  by   incident   shock 

u*     =  particle   velocity  in   region  traversed by   reflected  shock 

u* 
u      = —J— 

oc 

U* = velocity of reflected shock 

= u " 

"oo 

X* = linear distance 

X 

P* ,00 
V     2 

oo 

1/3 
■)             X" 

Y  = specific heat ratio of air 



T-T(~irn  ATI  n TJ» irr\ AT n  I r-% _ J^ ji \ 

p*  = density of undisturbed air 
oo        J 

p* = density in region traversed by incident shock 

oo 

p"    =   density  in  region  traversed by  reflected shock 
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The  study  of damage  to  structures  by blast waves   requires  analysis 

of the  normally reflected pressure  on the  wall.     To solve  this  problem 

the  hydrodynamical equations  of  flow must  be   solved in the   region between 

the wall  and the   reflected shock   front.     Since  the   system of non-linear 

partial  differential equations  of  flow are  presently solvable   only by 

numerical methods  that, when  reliable,   are  somewhat   cumbersome,   and the 

possibility  of exact   analytical solution  is   remote,   a method that   simpli- 

fies  the mathematics  somewhat  and is more  amenable  to  analytic  solution 

is  desirable.     Here,  we  examine   a direction  of simplification that   reduces 

the  system of equations   for  one-dimensional   flow to  a system of ordinary 

differential equations, by introduction of a constraint  that  satisfies 
1* 

the  initial  and wail  conditions,   as   discussed oy Makmo. 

2 Main nn  onH  Shear    have  obtained a theorv  of reflected impulse  at  the 

wall by  regarding each  element  of the  incident  wave  to be   individually 

reflected like the   shock  front,  but   this  is   a  zero'th  order  approximation, 
3 

not  satisfying derivative  conditions  at  the wall.     Chang  and Laporte 

have   obtained two theories   of shock  reflection.     One  is   series   expansion 

about  the point   of reflection,  which,   if truncated  for practical pur- 

poses,  may not   fully satisfy the wall  conditions.     The  other theory,  which 

assumes the  particle  velocity to be  zero  all  along the  reflected  shock 

line,  may also not   fully satisfy the wall   conditions.     Also,  both theories 

are   for the   calculation  of the   reflected shock  line   only.     In  the  theory 

we present here, we  consider calculation of the  entire  reflected wave  zone, 

from the  shock  front through interior points to points  on the wall,   such 

that wall  conditions   are  satisfied through   certain  derivatives.     However, 

it   is  probably most   useful only  in that  phase  of the wave  exerting the 

greatest  stress  on the wall,  which is the part   of greatest  interest   for 

damage  studies. 

"* '. ~ Superscript numbers denote references which may be found on page  26, 

11 



. . u . 
Ryzhov  and  Khristianovich     have   developed  a theory   on   the   problem 

of two   dimensional   regular  reflection,   but   the   theory   assumes   isenLropic 

flow and  is  therefore   applicable  to weak  shocks   only,   and  further,   the 

boundary  conditions   are  approximated.     Shindiapin     has   improved the 

theory with  respect  to boundary  conditions,   but  has   not  extended  the 

theory to non-isentropic   flow. 

While   the   so-called  self-similar  type   solutions   '     can  be   extended 

to  the  reflection problem as   an  approximation,  the  choice  of the 

similarity  form to be   assumed is  made   difficult  by the  strong  influence 

of the  wall  and by the  non-constancy  of the  quantities   in   front   of the 

reflected shock. 

The  example   considered here  is   for  plane   flow,   or spherical   flow 

at   distances   sufficiently  far   from the   center  of energy  release  that 

P-Lanar  approximation  suiiices.     xo  IS  Snovn now  une   iiov parameters 

behind the   reflected wave,   in particular the  pressure   on  the  wall   as 

a function of time  and the  impulse,  can be  obtained.     For  cylindrical 

surfaces  have  the   corresponding  symmetries. 

FLOW EQUATIONS 

The non-dimensionalized equations   of  flow describing the   one- 

of mass 

2 
(la) D.    +   UT>     +   DC   u     =   0 
'   ""' 't "x       '        x 

conservation  of momentum 

(lb) ; pv +  ut   +  uu^ =  0   , 
v      A 

adiabaticity 

(lc) S    + uS    = 0, 

12 



where t   is the  time with the  non-dimensionalizing scaling  factor   (ambient 
1/3 sound  speed times   ambient  pressure/mass   of explosive)        ,  x  is  the   distance 

with  the  non-dimensionalizing scaling  factor   (ambient  pressure/}ambient 
2 1/3 

sound speed)   /mass  of explosive)        ,  p  is  the  pressure   in  units   of the 

ambient pressure,  u is the particle  velocity  in units  of the  ambient 

sound speed,   c   is  the  sound velocity  in  units   of the   ambient   sound  speed, 

p   is   the  specific  heat   ratio  Y  (assumed constant)   times   the   density  in 

units  of the  ambient   density,   and S  is  the  excess  entropy over the   ambient 

in units  of the gas  constant  R. 

This   system of equations   is   supplemented by the  equation   of state, 

which,   for  illustrative  purpose,  we   assume  to be   ideal: 

(2a) I/Y       I   r -    1    n 
p   -  YP          exP   \~ Y 

v           1         p 1 
1L    —                  ,                —        i 

Y   -   1     p        YIY -   1) (2b) 

where E is the  non-dimensionalized energy. 

The  Eulerian   coordinates   x,  t  in the  equations   above  are   replaced 

by Lagrange   coordinates.     We   define m to be  the  mass   integral 

(3) m = j p(x,t)   dx   , 

where the  integration  is performed on  a constant  t  line  starting from the 

wall.     From this  definition  and  from the  continuity Equation  (la)   in the 

form 

(U) Pt = -(PU)X 

we  obtain 

;5a) mx = p   , 

(5b) mt = -pu   , 

13 



and.  also 

(6) xt(m,t)  = u. 

Using Equations   ^5;   and   \2; ,  we  put  Equation   i, i;   in  the   form 

(7) 

10       0 0 0       0 

0        1       0       Ypp        0       0 

0       0       i 0 10 

where  V   E   colj'js       p       u       u       p       S 

!n fforüntiation   ,-,-P Equation   v 7 /   with  respect   to rn and t  gives fincicuoiauiuil    Ul 

(8) 

0 0 0       0       YDO     0       0       0 

1       YPP        0       0 

u 0 1 0 1 

1 0 0 1 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0       0 

0 0 0       0 

0 0 0       0 

0 0 10 

0 0 0       1 

/p„ 

~ptlr m/ 

_2 

Y   t   1     h. 
y        p 
o 
r\ 
U 

0 

0 

\9) 
^mt     ^tt       mt       tt'  rmm'     mm      mm'     mt'     tt 

smj^iY   ouwiJJ- J. -Lur<D 

The  Rankine-Hugoniot   conditions  that  must  be   satisfied  across  the 
7 

shock  front   are,     in  dimensionless   form, 

conservation of mass, 

(10a) p(U - u)   =  p   (U - u   )    , 
o o 



conservation   of  momentum. 

UUDJ 
N2 

Piu   -  u; p  =  po(u - uo)2 + po   , 

conservation   of energy, 

(10c) 
ku -  u)2 + E + £ = i(U - u   )2 +  E    + -2-     , 
2 p       2 o o       p 

dx 
where  U is  the  shock velocity —  . 1   ax, 
These  conditions   simplified by Equation   (2)   give 

(Ha) u =  u(p;u^,p^,S^)   =  u_ 
u      u      u 

(.. T\      __      T-v 

/Y   -  1  -   v v- ö ; exp Y o 

1/2 

;(Y +1} vlh(v ♦ u2 po)_ 

(lib) S  =  SlP;Uo,po,So)   =  So 

Y        .   ,   Jh (*"> +  PQ \ 
*o \p +  p p    / 

TT   —    nt~ . ..       _       r>     \    _   -. u "  uv**VW   "   Uo 

(p +  y p^)  exp  ( Y  -  1 
S.) u 

(1 - /) p.1" 

1/2 
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1 3 
T.pt   i)  =  — +  n(II   -  u)   — be   the   differential   ODerator  in   trie   direction "        3t       " v "'    3m -,---- 
of  the   shock   line.      Implicit   differentiation   of  u   and  S   along  the 

reflected  shock  line   gives 

( I Pa) 

3u 
9p"pt 

_ /n 
m M V u 

N 3u 

dp     m 

dU 
DP. 

dU 
Du     + 

dU 

(12b) 

9S   n       -   ndl   _   „1    ^ä   n       +    n ( 11   _    n } K       =    V 
3p   ^t "   3p ^m m 2 

aq 3« 
Dp     +  Du    + 

aq 
DS 

2        3D       *O       3U o       3S o   ' x o o o 

whprp   the   shnrk   nath    is   ci ven   h\ 

(13) Dm =  p(U -  u)   . 

The  quantities ,   identified by  subscript   o,   that   result   from the   incident 

wave we   assume to be  known  as   functions  of m and t.     From Equation   (11), 

the   first  partial  derivatives  with  respect   to the  arguments  p,   u   ,  p   , 

S   ,  become 

\ J-ta, l 

1 .. u  ; 
o 9u 

3p        (p  - p 

p    T     \L    T    £\i     jp 

?Cn   + 2      » 
11    n     ) 

(l^b) 
3u =  1   , 

U^c; 
3u 
3S 2y 

(u  -  u 
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■™       5- 
(u - u. p" +   (3Y   - 2)pp     +   (y  - 1)PV 

2Y   PQ(P   -  P0HP  
+   tJ^Po^ 

(lUe) 
3S (P  -  P0)- 

9P Y  +  1 _/_   .   ..2_   w.2_   ,   _   , 
pvp   T    M   p    ;v M   P   T   Po; 

CUf) 
as 

(lUg) ^- = i 

(lUh) 3S -1 (P  -  P0)' 

9p Y  +  i       / 2     w   2 > 
o p_(p +  u P   )(y P + P   ) 

CONSTRAINTS 

For  simplicity,   it  is   assumed that  the   reflecting wall  is   at   m 

(see   Figure).     At  the wall the particle  velocity must   satisfy the 

=  x =  0 

c onu.it i on s 

l 1 c \ /Vu(x,t)\ 
[         »»      ) 
\           ~           /  X   = 0 

—    r\ 
- u> 

~.          r\ 
11    -     U, 

From this  result   and the  ideal gas  law   (2a),  we  can  show by taking higher 

derivatives  of (la)   and  (lb)  that  u must  satisfy also the  condition 

(16) p2u(x,t) ) 
V      3x2       /. 

=  0- 

17 



X 

.4$^ h  PARTICLE. P.^ 

INFLECTED DOMAIN 

T WALL 
t 

We now impose some constraints on the flow.  There is an infinity 

of wavs of doi^o- this-  The choice will denend on the nature of the 

ambient conditions and the incident wave.  For blast waves in still air, 

in the neighborhood of the wall at all times and also in the neighborhood 

of the asymptotic shock, we expect the particle velocity to vary slowly 

with x, and so we choose 

(IT) a(t)x + b(t)x: 

where a(t) and b(t) are functions of t only.  This expression satisfies 

both boundary conditions (15) and (l6) , and also permits the initial and 

shock conditions to be satisfied. 

For subsequent purpose, we differentiate Equation (17) twice with 

:i8a) 

(18b) 
£>.i 

— [p  - (Y - 1) pS ] 
YD 

rm m 



Fin 11 at lone   f iAnl     fi?l     n.nH   ( 7 )  a^p  ^iv ^nnations  involving; the  c; i z 

components   of V.     Solving  for V,   we   obtain 

(19) V = 

H(n(U   -   u)— +   D 
ap 

-G  -H 
3u 

^-{p(U   -  u)£ +  1} 

vj-       '       II 
,9u 
9p 

P(U - u) 
F      +   M.   JTWT1 
;2     3p "*"*" 

-  iO   _   Hi 

where 

(u +  2bx-)(U -  u)   - xP. 
G = 

vfn/n    _     ii ) 8u 
3p 

H  = yp(u +  2bx   ) 
.   ... > 9u 

xiplU -  uj— +   1} 
op 

By differentiating Equation   (12)   along the  reflected shock  line,  we  have 

(20a) "  2f^'U-u)   Pmt   "f Ptt  +  2P(U-u)   umt 

a..   - p2(U - u)2 £ pmm + p2(U - u)2 u      = F_  , 
tt dp    mm mm 3 

19 



(?(Yhl 03S     ,.. v 3S 
?  n ( U   -   u)    D        -   -— D 

3p   ■" v ~        ""   "mt        dp   'tt 
3S     2, 
    D     ( U -  u)      n 

+ p   (U - u) 3       =  F, 
mm U 

(21a) F^   =   DF1   +   Dp  D U       -   p 
no m 

a u 
D   [p(U   -   u) 

(21b) Fl,     E    DFo    + 
U \J lil 111 

D   [p(U  -  u)l  +  Dp 
L"P 

Equations   (20),   (l8b),   and   (8)   are   nine   equations   involving  the 

nine   components   of W.      Solving   for W   gives 

(22) W  =  B   1  Y   , 

where 

(23a) Y = 

Y  +  1 f^ra 2„   v J  P^   (— -   u  S   ) 
Y        " ^     p m 

.     ,     D, 
Y  +   1  ~_V 

Y P 

0 

6b x       Y   
+   1 1       ^m 

Y        "TO.   "Y  
+  1    P 

u 

n 

y2s  ) 
m 

ZQ 



(23b) ,-1 

DU D12 

!B21 
B 

22 

(23c) £ =   [p(U - u)2 + Tp]  |^+ 2(U -  u)      , 

ro 

(23d) B 

-YpJ2p(U -  u)     |^+  l]   P(U - 

11 
2p(U - u)|^+  1 

P? 

p(U  - 

0 

,2   3u   . 
3p 

2(U  - -  u) 

0 

-YPP   (U  -  u) 

r s 

p(U -  u)     — 
dp 

c 

9u 
9ip 

o   ; 

IE 
K 

1 
P( pT9p 

-1 

(23e) '12 

-YPP 

_ IE 

_l 
PT 

YPP (U  -  u)'"  +   Y p + 2YPP(U - U)  ir-\ 
 üE_L 

p(U -  u)?  +   YP  +   2ypp(U  -  u)|^ 

0       0       0 

0        0        0 

0       0       0 

YPP 0        0        0 



2p (U 
 HE L 
pc 

_1  Zu 
P?   3p s 

- u) _] 

pi' 

0 0 0 

(23f)       ß21 = [3P(U  - u)2  -  YP]  ||     _2 9S_ 
2(U  -  u) 

P2(U u)      C p^(U  - u)C 

as_ [p(U - u) +  Yp 

p2(U - u)2   C 

as 

ro 
ro 

1       p(U -  u)""  +  yp  +  2YPP(U 
_    . _ 

u) 
9u 

JE. 0 0 

:23g 

'22 
p(U   -  u)2   +   YPj p(U - u)' YP 

3S_ 

3-P 

P2(U  -  u)2     £ p(U  -  u)*   £ p2(U  -  u)2 

0 0 

0 0 

0 

0 

0 

(3 

0 

ö 



Solving   üqUatiUIl    UUa) iui      u \ u /  ,     oncic     x o     uuoaiii^u 

(2U) b(t)   = 
DX   U   -U 

m 

L.X 

Differentiating this  expression with  respect  to t   along the   reflected 

(25) Db 
/pxu -u 

\   2xJ     A        \ /\  2xJ      Ai 
t;       ' 

Equations   (2a),   (ll),   (13),   (25),   together with the  implicit  derivati1 

[26) Dp = P^   +  p(U -  u)   p__     , 

give  the  system of ordinary  differential  equations 

D 0 0 0 0 0 

0 D 0 0 0 0 

0 0 D 0 0 0 

u u 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 i 

p 

b 

X 

m = 

u 

s 

p 1      1 

Pt + p(u - u) rr, 

U(P;UO,PO,SO; 

_    /TT __\ p\. u   -  u; 

u(p;uo,po,So) 

S(P;U^,P^,SJ 

p(p,S) 

\j w 

Using (19) and (22), we can solve this system. 

The solutions of this system give b(t) as a function of time; a(t) 

is then determined by 

_/4.N _ u - b(t)x 
a\u; -  

3 
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The flow behind the reflected shock can now be calculated as 

solutions of ordinary differential equations, with each point on the 

calculated shock line serving as an initial point, x is given by 

(29) 
■3 

x = u = a(t)x+b(t)x   , 

which   integrates   along  the  m =   constant   line   into 

{V 
t(m) 

' t 1 Ht I _ ft 
J 

"- t(m) 

p 
?Y    CmlhCt) 

UUJ 

exn   . i   Cl       2afT)dTldt + 1 

um; 

-1/2 

where x(m), t(m) is a point on the shock line.  This value of x 

substituted into Equation (29) gives u as a function of m, t.  The 

pressure is then obtained from Equation (7): 

(31) P+ = - YPPU„ = " YP[a(t) + 3b(t)x^] 

which  integrates   into 

(32) v = vim)   exui-f        y[a(t)   +  3b(t)x   ]dt \ 
{J ""   '   ' ' 

t(m) 

On this m = constant line, the entropy S = a\m)   is constant and is given 

on the shock line.  The density then follows from Equation (2). 

On the wall the pressure simplifies to 

(33) p(0,t) = p(0) expj-J*  Y a(t)dt| 

-c(,u; 

PL 



The positive impulse imparted to the wall we take to be 

/ -3), ^   D~O 

t(0; 

p(0) exp /- I"   a(t)dti- 1 

t(0) 

dt 

where t is the time at which p(0,t) = 1. 

RALPH E. SHKAR RAY C. MAKING 
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